Science

The Future of Armour? New Chainmail-Like Material Shows Promise

A new two-dimensional (2D) material that combines exceptional strength with flexibility has been created by a team led by Northwestern University. Described as resembling interlinked chainmail, this innovative material is lightweight and holds potential for applications such as advanced body armour and other high-performance uses. The breakthrough is credited to the development of a scalable polymerisation process that creates densely packed mechanical bonds, reportedly achieving a record-breaking 100 trillion mechanical bonds per square centimetre.

Structure and Development Process

According to the research published in Science, this material is the first of its kind—a 2D mechanically interlocked polymer. The team utilised X-shaped monomers, arranging them in a crystalline structure to facilitate the formation of mechanical bonds. William Dichtel, Robert L. Letsinger Professor of Chemistry at Northwestern University, noted in a statement, as reported by phys.org, that this novel polymer structure offers unique resistance to tearing.

He explained that the material can dissipate applied forces in various directions due to the freedom of movement within its mechanical bonds. Madison Bardot, a doctoral candidate and the study’s first author, reportedly devised the concept for the material’s formation. Describing the process as “high-risk, high-reward,” Dichtel attributed the success to rethinking traditional approaches to molecular crystal reactions. Layers of the resulting interlocked polymer sheets are said to provide both rigidity and flexibility, while their structure has been confirmed using advanced electron microscopy techniques by researchers at Cornell University.

Enhanced Properties and Applications

The material’s inherent strength inspired researchers at Duke University, led by Matthew Becker, to incorporate it into Ultem, a robust polymer used in extreme conditions. A composite containing just 2.5 percent of the new material reportedly increased Ultem’s toughness significantly. Dichtel suggested that the polymer could serve as a specialised material for ballistic fabrics and lightweight, protective gear.

The study was dedicated to the late Sir Fraser Stoddart, who pioneered the concept of mechanical bonds and was awarded the Nobel Prize in Chemistry in 2016 for his contributions to molecular machines.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


James Webb Space Telescope Unveils Hidden Interstellar Wonders of Supernova Cassiopeia A



Poco X7 and X7 Pro Review: The Mid-Range Marvels

Articles You May Like

Cameron Diaz says retirement was ‘best 10 years of my life’
Ceasefire deal is ‘last chance for Gaza’, Qatar’s PM tells Sky News
‘Cat videos not a threat’: Minister says there are ‘no plans’ for US-style TikTok ban
Amorim takes Man United heat; Spurs in trouble, more: Marcotti recaps the weekend
Tiering 12 NHL teams’ playoff hopes: From ‘we can still fix this’ to ‘resigned to their fate’